----构造模型策略
一、教材分析
排列和组合是数学基础知识的重要组成部分之一,它在解决实际问题以及科学技术的研究中都有广泛的应用;在排列组合问题中充分体现了分类、化归的数学思想。它应用性强,具有题型多变,条件隐晦,思维抽象,分类复杂,问题交错,易出现重复和遗漏以及不易发现错误等特征。因而在这部分教学中,应充分调动学生的积极性,强调学生的主体作用,明确基本原理,注重思维过程的分析,让学生在问题解决的过程中不断反思探索规律,体验成功,从而提升学生的思维能力。
二、学情分析
高二(1)班的同学素质高,思维活跃,其中十几位同学参加数学奥赛辅导,学习数学态度端正,兴趣浓厚,有较强的数学能力和积极主动的学习精神。
三、教学目的
1、认知目标:
使学生进一步理解并掌握处理排列组合问题的基本策略,进一步体会分类与化归的数学思想方法以及分析与解决问题的能力,培养学生的探索创新意识。
2、技能目标:
充分发挥教师的主导和学生的主体作用,使学生的自主意识、自学能力、探索创新意识得到发展。
3、情感目标:
培养学生的自信心和学习兴趣,树立实事求是的科学态度和不怕困难的进取精神,积极探索,进而培养学生的创新能力。
四、教法分析
根据排列组合的知识特点“条件隐晦,思维抽象”,在教学中采用发现法,坚持“思路教学”,深钻教材,注意从实验入手,模拟发现,从特殊到一般,归纳出一般的规律,优化学生的思路,激活学生的思维。
五、教学过程分析
1、复习思考
(1)处理排列组合问题的常见解题策略
(提问学生作答)
问题一、街道旁有编号1、2、3、4、5、6、7、8、9、10共十只路灯,为节约用电又不影响照明,可以把其中的三只灯相灭,但不能同时熄灭相邻两只,在两端的两只路灯不熄灭的情况下,问不同的熄灯方法有多少种?
①通过复习提问总结解决排列组合问题的基本思路和方法。
②设置问题情景,激发学生的学习欲望。通过引导,学生得出多种解法,从而优化思维,发现规律为构造数学模型一做好铺垫。
2、创设情景
练习(1):四个相同苹果分给三个人,没人至少一个,有多少种分配方案?(提问,多解),电脑演示。
(2):把六个名额分给三个班级,没班至少一个名额,有多少种分法?(提问多解),电脑演示,介绍插板法。
巩固创设情景。
体现化归思想,并将问题发散,从不同角度展示出问题的共性,给学生自主发现、探索的空间,引入“插板”这一解决问题的策略。
3、提出猜想
你能编一道与本题意思相近的习题或将本题推广吗?